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LFITER TO THE EDITOR 

Robustness against random dilution in attractor neural 
networks 
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t timburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeelt, Belgium 
t Department of ?heoretical Physics, University of Oxford, I Keble Road, Oxford 
OX1 3NP, UK 

Received 8 March 1591 

Abstract We study the robustness of attractor neural networks against random disruption 
of a fraction of the synaptic couplings. For the maximally stable newark (MN), we 
determine the effect of different degrees of dilution on the overall storage capacity, the 
size of the basins of attraction and the attractor overlap. Comparison with corresponding 
mults  for the Hopfield model indicates that, although MSN is more robust at low degxes  
of dilution, the Hopfield nenvork becomes more robust at high dilution. 

Memory retrieval in attractor neural network models is a collective phenomenon. 
Information of one of the many stored pattems is encoded distributively among the 
synapses, so that the stored pattern is associated with a dynamically stable config- 
uration of the neuronal states. In common with many other collective phenomena 
in physics, it is a globnl behaviour which is very robust against local uncorrelated 
disruptions. In the presence of thermal noise or  dilution of synapses, for example, 
macroscopic retrieval states can still survive (although their overlap with the associ- 
ated patterns may be affected) [1,2]. 

In a previous paper 131, we have investigated the robustness of the stored memo- 
ries against random cutting of a fraction of the connections in a feed-fownrd neural 
network. We have seen that perfect output cannot be sustained even for perfect 
input, once a small fraction of the connections is destroyed. As a result, the storage 
capacity of pefect retrievnl immediately drops from a finite value to zero on random 
dilution. Nevertheless, this does not genuinely reflect the robustness of the system, 
for the output can still have a high probability of being correct if the patterns have 
k e n  stored during the learning process with a large aligning field. 

Robustness against random dilution may be more clearly demonstrated in otlrnctar 
neural networks, in which the outputs of the neurons are fed back to the input to 
maintain an iterative dynamics. For a feedback architecture, the network state can 
still drift towards an attractor which is highly correlated with the stored pattern, 
although it cannot retrieve the pattern perfectly on random dilution. Thus it is still 
meaningful to consider the notion of robusmess in terms of the attractor overlap, 
basin size and storage capacity of ullruclion. 

In the present letter, we generalize the notion of robustness against random 
dilution to attractor neural networks. We shall concentrate on the effects of the 
disruption of synapses on the attractor overlap, basin size and storage capacity. As 
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we shall see, the networks deteriorate on increasing dilution using all of the three 
performance criteria, and the disruptive effects are especially marked for networb 
with small aligning fields. 

It has been pointed out that the effects of random dilution are equivalent to 
those of static synaptic noise [2,4]. Both introduce fluctuations to the local fields of 
each neuron, proportional to the magnitude of disruption. Here we notice that in 
dilute networks, the effects of random dilution are, furthermore, equivalent to those 
of thermal noise [SI. This is because configuration correlations beyond one time 
step are negligible in dilute networks, rendering static and dynamic synaptic noises 
indistinguishable. Thus the dilution fraction can be represented by an effective noise 
temperature, and there is a direct correspondence between the phase diagrams of the 
two cases. Consequently, a network robust against random dilution should also be 
robust against thermal noise, and vice versa. 

The determination of the dynamical features of the system requires solution of 
the dynamical equations over many time steps. For a network with high connectivity, 
this is a very difficult problem. Most analytical calculations have therefore been done 
for the highly diluted structure of Derrida el 01 [6]. In this model, each neuron 
is connected to only a small number C of the total number of N neurons with 
InC a InN 171. The random and high dilution basically reduces the dynamical 
problem to the solution of a single time step. 

In this letter, we consider such a highly diluted network in which p patterns are 
stored in the non-vanishing synaptic coefficients J4. We are particularly interested 
in the behaviour of the so-called maximally stable network (MSN) [SI, because it has 
the highest storage capacity in the absence of disruption [5 ] ,  and our previous study 
has revealed its strong robustness against random dilution [3]. Networks with other 
synaptic presciptions, such as the Hebbian network, will be discussed afterwards. 

In the MSN the coupling coefficienu fulfil the following two requirements: 
(i) the normalization conditions 

EJi = C (i = 1,2,. . . ,N) (1) 
i 

(ii) the stability conditions for the aligning fields 

The maximum allowed value for the stability parameter K is determined, for each 
value of the storage ratio (I =PIC,  by Gardner’s equation [9] 

We consider parallel dynamics in which the state of every neumn Si(l) is updated 
at each time step 
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Knowing the overlap m(r) of the network state with one of the stored pattern9 
at time I, it is easy to calculate the overlap m(r + 1) with the same pattem at the 
subsequent time f + 1 [lo, 111: 

This expression depends solely on the distribution P ( A )  of the aligning field Ay. 
For the highly diluted network, one is allowed to iterate (5 )  over many time steps. 
This makes it possible to determine the attractor overlap and basins of attraction by 
studying the fixed points of the map (5). Such a calculation has been done for MSN 
hy Gardner [lo]. For MSN, the P(A) distribution is given by a normalized Gaussian 
truncated below K plus a delta function at K 

P ( A )  = 6(A-K)~[1+erf(K/&)]+B(A-K)(1/&)exp(-&AZ). (6) 

To study the robustness of MSN against random cutting of synapses, we execute 
in the highly diluted network a further random cutting of a fraction of the remaining 
synapses, after the synaptic coefficients have been prescribed according to (1) to (3). 
Each of the non-vanishing synapses acquires an independent probability (1 -f) of 
being disrupted so that, after our destructive action is over, every neuron remains 
connected on average to only fC other neurons. The connections that survive the 
cutting keep their previously assigned value Jii. The synaptic coefficient in the final 
network can therefore be written as c;iJ;I where cii = 1 or 0 with probability f and 
(1 -f), respectively. The new aligning fields are 

where we have adapted the normalizing pre-factor to take account of the decreased 
number of terms in the sum. The distribution P ( 7 )  of the 7;” has been calculated in 
[3] and could be used, after correcting for the altered normalization factor, directly 
in the dynamical equation (5). An alternative and simpler expression can be obtained 
by noting that the 7,?, for fixed J, and E;” and thus fixed A t ,  are Gaussian variables 
with mean JA: and variance 1 -f. Retracing the derivation of (5 )  and averaging 
now over the ci as well yields 

where P ( A )  is again the distribution (6) of the aligning fields Ay in MSN. Putting 
f = 1 in (8) reproduces (5)  as it should. 

The fixed points of the iterative map (8) for different values of K (or a) andf can 
only be obtained numerically. Figure 1 shows the results for four different values of 
f .  Full curves represent stable fixed points, while broken curves show unstable tixed 
points. The latter define the basins of attraction. For f = 1, we recover the results 
of Gardner [lo] with a stable fixed point m = 1 for all (I 6 ac = 2. This retrieval 
attractor has a wide basin of attraction only when (I is smaller than aB = 0.42 and a 
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The fixed point m = 0 changes its stability on iteration whenfk(0) = 1, or 

2 

= [ -&exp(-q) + [1+ erf ($=)I} 
(9) 

For each value off, this equation determines the value K B ( f )  or as(f) which confines 
the interval of wide retrieval. The sign of fi;"(O) in (9) determines the curvature of 
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Figure 2. Phase diagram lor the randomly diluted MSN network. The full curve shows 
ac, the boundary between retrieval and no retrieval. The broken C U N ~  s h w  as(f) ,  
the transition between wide and narmw retrieval. The dotted line shaws the retriml 
boundary for the dilute Hopfield netwoh. 

the lines of fixed points at m = 0 in figure 1. This curvature differentiates the two 
regimes in the following way. For fc(0) < 0, m = 0 is the only fixed point when 
the system lies on the phase boundary defined by (lo), which therefore separates the 
regimes of wide retrieval and non-retrieval. On the other hand, for fc(0) > 0, an 
other stable fixed point is present when the system lies on the phase boundary (lo), 
which therefore separates the regimes of wide and narrow retrieval. This results in a 
tricritical point, on the phase boundary (lo), which satisfiesfk(0) = 1 and fF(0) = 0 
.:-...~m...,,...~i.. TI.- -,.-A:+:,.- $iii/n\ - n . . :n~~I  
.x,rlurroL.*"".xy. l l l C  w r r u r , r " r , , K  ,U, - U JLC1U.l 

( ~ - ~ ~ ) L e x p ( - q )  +: [ I+er f  (%)I ( 3 - K Z ) = 0 .  (11) JT;; 
Solving this equation numerically yields K' = 1.70. Putting this value in (3) and in 

the two regimes in figure 1. 
The results are summarized in the ( ( I J )  phase diagram in figure 2. The full curve 

shows a,(f) while the broken curve represents (~~(f) .  The curve (~,(f) marks the 
boundary between retrieval and no retrieval. The curve (I&) divides the domain of 
retrieval into wide and narrow retrieval. Both curves merge with the same slope [5] 

off larger than 0.53, the retrieval overlap is in general close to 1 for all values of (I 
below (I#) where it jumps discontinuously to 0. For values off smaller than 0.53, 
the retrieval overlap decreases continuously from the value 1 at (I = 0 tot 0 at (I&). 
This different behaviour corresponds to the two regimes in figure 1. 

Iln\ vieldr _ *  - ll 7K n n A  f* - n <2 Thk lnttor vslmrrc fir the h n n n A s n r  ~ i i n ~ e  h p h w a o n  \'", JL-*"., - "'~"'.".., - "_.,.,. ...." .".".," .- ...- ..".._ 

for va_!uer off "!!er than f' = 0.53 which define3 the tricritiu! point: For v2!L!c3 
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The dotted l i e  in figure 2 shows the storage capacity for the highly diluted 
Hopfield model, i.e. the Hebbian network [6]. Since in this case Jii - E,, [,!'[,!' for 
all synaptic coefficients, the effem of dilution before and after the learning stage 
become indistinguishable. Random cutting of the remaining synapses after learning 
merely causes a further reduction of the very low connectivity. The critical storage 
capacity 0 1 ~  therefore is given by the straight line 2r/f. Alternately, the same result is 
obtained from the dynamical equation (8) by noting that the aligning field distribution 
P ( A )  for the Hopfield model is a normalized Gaussian of mean I/&. The resultant 
equation is equivalent to that of the undiluted case if we substitute a/f for 01. No 
difference exists between ac and ag because the attractor always has a wide attraction 
basin. 

Comparing the MSN and the diluted Hopfield model, we note that the Hopfield 
model has a higher storage capacity than the MSN for f smaller than 0.89. Only 
for larger values o f f  (i.e. little damage) does the MsN perform better than the 
randomly diluted Hopfield model. This can be considered as a manifestation of the 
principle of specialization, in the sense that the MSN performs better in the presence 
of low disruption, whereas the Hopfield model performs better in a highly disruptive 
environment [SI. 

In the limit of very high dilution (f - 0), the phase lines of the two network 
become tangents to each other. This is because in the limit of very low storage 
capacity, the aligning field distribution P ( A )  for the two cases are nearly identical. 
For the MSN it is essentially a delta function peaked at K N l/& >> 1, whereas 
for the Hopfield model it is a Gaussian peaked at I/& >> 1. It is interesting to 
note a similar feature for the effects of thermal noise on the two networks [5]. In 
the limit of high noise temperature, the two networks have the same storage capacity 
asymptotically. 

It is natural to compare the effects of random dilution and thermal noise. TO this 
end, we can rewrite the dynamical equation (8) as 

where T& = (1 -f)/f can be considered as the effective noise temperature due to 
random dilution. This dynamical equation is identical to the case of introducing a 
Gaussian noise of magnitude T,, to the local fields during updating IS]. We note in 
passing that the equivalent static synaptic noise due to random dilution has again the 
same expression [2,4]. In practice, thermal noise is dynamical, i.e. it fluctuates from 
one time step to the other, and therefore has a nature different from dilution noise, 
which is static. For the case of thermal noise studied in [5 ] ,  we have a probabilistic 
dynamics in a perfect structure of the network, whereas here we are concerned with a 
deterministic dynamics in a disrupted network with static, structural noise. However, 
since configurational correlations beyond one time step are negligible in the highly 
diluted network, the effects of the two kinds of noise become indistinguishable. The 
phase diagram in figure 2 is therefore identical to that for the thermal noise [5] after 
a rescaling of the axes. 

Our work has demonstrated that the MSN has a strong robustness specialized to 
a low degree of dilution, whereas the Hopfield model is specialized to an opposite 
environment. It is therefore natural to consider the more general issue of finding the 
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synaptic prescription with optimal robustness at a tixed degree of random dilution. 
The corresponding issue in the case of thermal noise has recently been addressed 
using the principle of adaptation [SI. There an appropriate performance function 
corresponding to a training overlap is defined, and the synaptic prescription optimizing 
the performance function is chosen from the space of all synaptic coefficients. The 
optimalty adapted network is obtained by setting the training overlap to be the same as 
the attractor overlap, to be determined self-consistently. An interesting result is that 
the Hopfield model has a higher storage capacity than any other synaptic prescription 
for a noise temperature higher than 0.38. Employing the notion of effective noise 
temperature in (12), this implies that the Hopfield model has the highest storage 
capacity for a fraction f less than 0.87. The case of optimal adaptation in the 
presence of random dilution will be considered in detail in a separate publication 
WI. 
We thank D Sherrington and E Domany for very meaningful discussions. Thii work 
is partially supported by a grant from the Science and Engineering Research Council 
of the United Kingdom and by the Programme on Inter-University Attraction Poles 
of the Belgian Government. 
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